LAMIA
Membre

Hélène PAUGAM-MOISY
Statut: Professeur des Universités à l'Université des Antilles
Equipe: APPRENTISSAGES INTERACTIONS DONNEES
Département: DMI
Bureau: 323
: 0590483421
: 0590483086
:

Thèmes de RechercheRecherchePublicationsEnseignementAutres Activités


My main scientific interest is understanding how knowledge is acquired, represented, stored, processed and retrieved in the brain, through computational modelling and learning in artificial neural networks.

Competence and skill in several research areas: Machine Learning -- Neural Networks -- Parallel Computing -- Cognitive Science



^


My current topics of exploration are Machine Learning and Spiking Neuron Networks, especially Polychronization and Reservoir Computing, and Deep Neural Networks.

Applied research (mainly on Big Data) : Affective Computing -- Climate Informatics



^


Nombre total de publications : 27


Article dans une revue

Overview of facts and issues about neural coding by spikes. Bruno Cessac, Hélène Paugam-Moisy, Thierry Viéville - Journal of Physiology - Paris, Elsevier, 2010, 104 (1-2), pp.5-18. 〈10.1016/j.jphysparis.2009.11.002〉
Delay learning and polychronization for reservoir computing. Hélène Paugam-Moisy, Regis Martinez, Samy Bengio - Neurocomputing, 2008, 7-9, 71, pp.1143-1158. 〈10.1016/j.neucom.2007.12.027〉
Combining Protein Secondary Structure Prediction Models with Ensemble Methods of Optimal Complexity. Yann Guermeur, Gianluca Pollastri, André Elisseeff, Dominique Zelus, Hélène Paugam-Moisy, Pierre Baldi - Neurocomputing, Elsevier, 2003, 56, pp.305-327


Communications avec actes

From Neuronal cost-based metrics towards sparse coded signals classification. Anthony Mouraud, Quentin Barthélemy, Aurélien Mayoue, Anthony Larue, Cedric Gouy-Pailler, Hélène Paugam-Moisy - 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN 2012), Apr 2012, Bruges, Belgium. pp.311-316, 2012
SpikeAnts, a spiking neuron network modelling the emergence of organization in a complex system. Sylvain Chevallier, Hélène Paugam-Moisy, Michèle Sebag - J. Lafferty and C. K. I. Williams and J. Shawe-Taylor and R.S. Zemel and A. Culott. NIPS'2010, Dec 2010, Vancouver, Canada. pp.379--387, 2010, Advances in Neural Information Processing Systems 23
SpikeAnts : un réseau de neurones impulsionnels pour modéliser l'émergence de l'organisation. Sylvain Chevallier, Helene Paugam-Moisy, Michèle Sebag - Cinquième conférence française de Neurosciences Computationnelles, Oct 2010, Lyon, France. pp.114-119, 2010, 〈http://2010.neurocomp.fr/neurocomp10proceedings.pdf〉
Algorithms for structural and dynamical polychronous groups detection. Regis Martinez, Hélène Paugam-Moisy - ICANN'2009, International Conference on Artificial Neural Networks, Sep 2009, Limassol, Cyprus. Springer, 5769, pp.75-84, 2009
Des groupes polychrones pour modéliser les traces mnésiques. Regis Martinez, Hélène Paugam-Moisy - ARCo'08 - Connaissances : Genèse, Nature et Fonction, Dec 2008, Lyon, France. pp.66-70, 2008
Neural Networks for Computational Neuroscience. David Meunier, Hélène Paugam-Moisy - European Symposium On Artificial Neural Networks, ESANN'2008, Apr 2008, Bruges, Belgium. pp.367-378, 2008
A supervised learning approach based on STDP and polychronization in spiking neuron networks. Hélène Paugam-Moisy, Regis Martinez, Samy Bengio - 15th European Symposium on Artificial Neural Networks, ESANN'07, Apr 2007, Bruges, Belgium. pp.427-432, 2007
DAMNED, un simulateur parallèle et événementiel, pour rèseaux de neurones impulsionnels. Anthony Mouraud, Hélène Paugam-Moisy - 1ère conférence française de Neurosciences COMPutationnelles, NeuroComp 2006, Oct 2006, Pont-à-Mousson, France. pp.120-123, 2006
Assemblées Temporelles dans les Réseaux de Neurones Impulsionnels. David Meunier, Regis Martinez, Hélène Paugam-Moisy - 1ère Conférence francophone NEUROscience COMPutationnelles, NEUROCOMP 2006, Oct 2006, Pont-à-Mousson, France. pp.187-190, 2006
Saliency extraction with a distributed spiking neural network. Sylvain Chevallier, Philippe Tarroux, Hélène Paugam-Moisy - M. Verleysen. European Symposium on Artificial Neural Networks, Apr 2006, Bruges, Belgium. d-side publications, pp.209-214, 2006
Learning and discrimination through STDP in a top-down modulated associative memory. Anthony Mouraud, Hélène Paugam-Moisy - M. Verleysen. Mar 2006, D-side publications, Evere, Belgium, pp.611-616, 2006
Cluster detection algorithm in neural networks. David Meunier, Hélène Paugam-Moisy - M. Verleysen. 2006, d-side publications, Evere, Belgium, pp.19-24, 2006
Distributed processing for modelling real-time multimodal perception in a virtual robot. Sylvain Chevallier, Hélène Paugam-Moisy, François Lemaître - PDCN'2005, Feb 2005, Innsbruck, Austria. pp.393-398, 2005
A spiking Bidirectional Associative Memory for modeling intermodal priming. David Meunier, Hélène Paugam-Moisy - IASTED. 2005, ACTA Press, pp.25-30, 2005
Evolutionary supervision of a dynamical neural network allows learning with on-going weights. David Meunier, Hélène Paugam-Moisy - IEEE. 2005, pp.1493-1498, 2005
Neural networks for modeling memory: case studies. Hélène Paugam-Moisy, Didier Puzenat, Emanuelle Reynaud, Jean-Philippe Magué - European Symposium on Artificial Neural Networks, 2002, Bruges, Belgium. pp.71-82, 2002
A new multi-class SVM based on a uniform convergence result. Yann Guermeur, André Elisseeff, Hélène Paugam-Moisy - IEEE International Joint Conference on Neural Networks 2000 - IJCNN 2000, 2000, Come, Italie, IV, pp.183-188, 2000
Generalization performance of multi-class discriminant models. Hélène Paugam-Moisy, André Elisseeff, Yann Guermeur - IJCNN'2000, 2000, Come, Italie, IV, pp.177-182, 2000
Risque garanti pour les modèles de discrimination multi-classes. André Elisseeff, Hélène Paugam-Moisy, Yann Guermeur - Florence Le ber, Jean-Francois Mari, Amedeo Napoli, Arnaud Simon. Septième journées de la Société Francophone de Classification - SFC'99, Sep 1999, Nancy, France, Unité de recherche INRIA Lorraine, pp.111-118, 1999
Multivariate Linear Regression on Classifier Outputs: a Capacity Study. Yann Guermeur, Hélène Paugam-Moisy, Patrick Gallinari - ICANN 1998 - 8th International Conference of Artificial Neural Networks, Sep 1998, Skövde, Sweden. Springer, ICANN 1998 - 8th International Conference of Artificial Neural Networks, pp.693-698, 〈10.1007/978-1-4471-1599-1_106〉


Communications sans actes

Informatique Affective : Classification de l'Etat Emotionel. Stephane Cholet, Helene Paugam-Moisy, Sebastien Regis, Lionel Prevost - Extraction et Gestion des Connaissances, Jan 2017, Grenoble, France. 2017, 〈http://egc2017.imag.fr/〉
Emergence of Temporal and Spatial Synchronous Behaviors in a Foraging Swarm. Sylvain Chevallier, Nicolas Bredeche, Hélène Paugam-Moisy, Michèle Sebag - European Conference on Artificial Life, Aug 2011, Paris, France. 2011
An Introduction to Deep Learning. Ludovic Arnold, Sébastien Rebecchi, Sylvain Chevallier, Hélène Paugam-Moisy - European Symposium on Artificial Neural Networks (ESANN), Apr 2011, Bruges, Belgium. Proceedings of the European Symposium on Artificial Neural Networks (ESANN)
The DAMNED Simulator for Implementing a Dynamic Model of the Network Controlling Saccadic Eye Movements. Anthony Mouraud, Hélène Paugam-Moisy, Alain Guillaume - ICANN'2010, International Conference on Artificial Neural Networks, Sep 2010, Thessaloniki, Greece. 2010
Unsupervised Layer-Wise Model Selection in Deep Neural Networks. Ludovic Arnold, Hélène Paugam-Moisy, Michèle Sebag - 19th European Conference on Artificial Intelligence (ECAI'10), Aug 2010, Lisbon, Portugal. 2010, 〈10.3233/978-1-60750-606-5-915〉
Optimisation de la Topologie pour les Réseaux de Neurones Profonds. Ludovic Arnold, Hélène Paugam-Moisy, Michèle Sebag - 17e congrès francophone AFRIF-AFIA Reconnaissance des Formes et Intelligence Artificielle - RFIA 2010, Jan 2010, Caen, France. 2010
Les groupes polychrones pour capturer l'aspect spatio-temporel de la mémorisation. Regis Martinez, Helene Paugam-Moisy - Deuxième conférence française de Neurosciences Computationnelles, "Neurocomp08", Oct 2008, Marseille, France
Learning and Self Organizing in Spiking Neuron Networks. Hélène Paugam-Moisy - AMORPH Workshop, Jan 2007, University of Sheffield, United Kingdom. 2007
Détermination et contrôle de la compléxité dans les systèmes d'apprentissage numérique. Florence D'Alché-Buc, Stéphane Canu, Tautvydas Cibas, André Elisseeff, Patrick Gallinari, Hélène Paugam-Moisy - Journées du PRC IA, 1997, Grenoble, France. Journées du PRC IA


Chapitre d'ouvrage

Learning Sparse Features with an Auto-Associator. Sébastien Rebecchi, Hélène Paugam-Moisy, Michèle Sebag - Kowaliw, Taras and Bredeche, Nicolas and Doursat, René. Growing Adaptive Machines, 557, Springer Verlag, pp.139 - 158, 2014, Studies in Computational Intelligence, 〈10.1007/978-3-642-55337-0_4〉
Computing with Spiking Neuron Networks. Hélène Paugam-Moisy, Sander M. Bohte - G. Rozenberg, T. Back, J. Kok. Handbook of Natural Computing, Springer-Verlag, pp.335-376, 2012, 〈10.1007/978-3-540-92910-9_10〉


Poster

Affective Computing: Classification and prediction of emotional states. Stephane Cholet, Lionel Prevost, Helene Paugam-Moisy, Sébastien Regis - Caribbean Academy Of Science, Nov 2016, Deshaies, France. 2016, 〈http://www.caswi.org/〉
Polychronous groups for analyzing self-organization in spiking neuron networks. Hélène Paugam-Moisy, Regis Martinez - P. Baudot, R. Doursat. 1st International Workshop on "The Shapes of Brain Dynamics", Jun 2010, Complex System Institute, Paris, France. 2010


^


Algorithmique et programmation -- Mathématiques pour l'informatique -- Intelligence artificielle -- Parallélisme et calcul distribué



^


Direction de thèses : Stéphane Cholet et Emmanuel Biabiany

Responsabilité administrative de l'équipe AID

Animation du groupe de travail AID et de son site d'informations : https://github.com/hpaugam/workAID/wiki




Lien direct : lamia.univ-ag.fr/membres/hélène-paugam-moisy

Actualité
LAboratoire de Mathématiques, Informatique et Applications